

OPUS[®] RoboColumn[®] Pre-packed Chromatography Columns

User Guide

The information contained in this document is subject to change without notice.

With respect to documentation accompanying product, Repligen makes no warranty, express or implied. Any and all warranties related to the documentation accompanying product are expressly disclaimed. Customer shall refer to the terms and conditions of sale governing the transaction for any and all warranties for the Product.

Repligen Corporation shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Repligen Corporation.

Products are not intended for diagnostic or therapeutic use or for use in vivo with humans or animals.

For further information, please contact Repligen Corporation at <u>www.repligen.com</u>.

©2021 Repligen Corporation. All rights reserved. The trademarks mentioned herein are the property of Repligen Corporation and/or its affiliate(s) or their respective owners.

Customer Support

customerserviceEU@repligen.com +49 (0) 751-56 121 0

Repligen GmbH Parkstr. 10 88212 Ravensburg Germany www.repligen.com

Contents

1.	Intro	oduction	6	
2.	Abo	ut this document	6	
3.	Safety precautions			
4.	Colu	ımn description	7	
	4.1	Column components	7	
	4.2	Column materials of construction	7	
	4.3	Column physical specifications	8	
	4.4	Solvent compatibility	8	
	4.5	Column use recommendations	8	
5.	Prep	paring to use OPUS [®] RoboColumn [®] PPCs	9	
	5.1	Equipment	9	
	5.2	Experimental set-up	10	
	5.3	Sample preparation	10	
6.	Prot	ocol	10	
	6.1	Prepare the OPUS [®] RoboColumn [®] PPC array	10	
	6.2	Prepare the Te-Chrom [™] module	11	
	6.3	Set-up Te-Chrom [™] Wizard	12	
	6.4	Run chromatographic method	15	
	6.5	Evaluate data	15	
	6.6	Plot data	16	
	6.7	Regenerate resin and store the column array	16	
7.	Τιοι	ıbleshooting	16	
8.	Ord	ering information	17	
9.	Online literature			
10.	. Index			

List of tables

Table 1. Explanation of user attention phrases	6
Table 2. Safety precautions for OPUS® RoboColumn® PPCs	
Table 3. Materials of construction	7
Table 4. Physical specifications summary	8
Table 5. Column use recommendations	8
Table 6. Recommended equipment for automated handling of OPUS® RoboColumn® PPCs	9
Table 7. OPUS® RoboColumn® PPC ordering information	17

List of figures

Figure 1. Column components: OPUS [®] RoboColumn [®] PPC	7
Figure 2. Prepare OPUS [®] RoboColumn [®] PPC array: Remove cover seals	10
Figure 3. Prepare OPUS [®] RoboColumn [®] PPC array: Remove excess storage solution	11
Figure 4. Adjust Te-Chrom™ operating height	11
Figure 5. Load OPUS [®] RoboColumn [®] PPC array into Te-Chrom [™]	12
Figure 6. Te-Chrom [™] Wizard features	
Figure 7. Te-Chrom™ Wizard Hardware Configuration menu	
Figure 8. Te-Chrom™ Wizard Plate Layout menu	
Figure 9. Te-Chrom [™] Wizard Process Configuration menu	
Figure 10. Define workflow parameters in Te-Chrom™ Wizard	
Figure 11. Te-Chrom™ Wizard Plate Handling menu	
Figure 12. Te-Chrom™ Wizard Reporting menu	
Figure 13. Te-Chrom™ Wizard data plotting example	

Abbreviations

AC	Affinity chromatography
AIEC	Anion exchange chromatography
cGE-PAGE	Capillary gel electrophoresis-polyacrylamide gel electrophoresis
CIEC	Cation exchange chromatography
DBC	Dynamic binding capacity
DoE	Design of Experiments
ELISA	Enzyme-linked immunosorbent assay
HCIC	Hydrophobic charge induction chromatography
HIC	Hydrophobic interaction chromatography
HPLC	High performance liquid chromatography
LC	Liquid chromatography
mAb	Monoclonal antibody
MMC	Mixed-mode chromatography
MS	Mass spectrometer
OPUS®	Open Platform, User Specified
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SEC	Size exclusion chromatography
τ	Residence time

1. Introduction

OPUS[®] RoboColumn[®] Pre-packed Columns (PPCs) are miniaturized chromatography columns that enable fully automated, parallel processing of chromatographic separations with a robotic liquid handling workstation such as the Tecan Freedom EVO[®] and the Tecan Fluent[®].

OPUS[®] RoboColumn[®] PPCs are available pre-packed with over 300 user-specified resin types. Resin selection includes a wide variety of commercially-available chromatographic media with different functionalities including AIEC, CIEC, HIC, SEC, AC, HCIC and MMC mode of operation.

Bed containment between two filter frits and professional packing with consideration to individual material compression requirements ensure high efficiency and peak symmetry similar to that of preparative and process separation columns and distinguishes the system from the current filter based systems for simple on/off sample equilibration operation.

2. About this document

This manual uses several different phrases. Each phrase should draw the following level of attention:

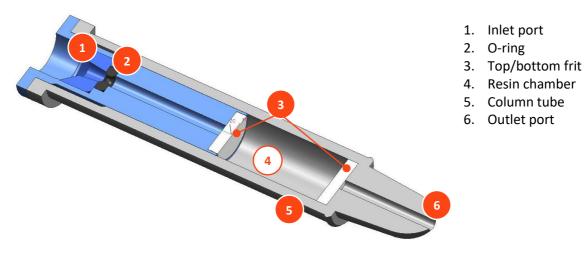
Phrase	Description
Note:	Points out useful information.
IMPORTANT	Indicates information necessary for proper instrument operation.
PRECAUTION	Cautions users of potential physical injury or equipment damage if the information is not heeded.
WARNING!	Warns users that serious physical injury can result if warning precautions are not heeded.

Table 1. Explanation of user attention phrases

3. Safety precautions

Table 2. Safety precautions for OPUS® RoboColumn® PPCs

Symbol		Description
WARNING		Wear standard laboratory PPE, including lab coat, protective eye wear, and gloves.
WARNING		This product is for laboratory use only. Not for administration to humans.
WARNING	٢	 Flammable liquid and vapor. Keep away from heat/spark/open flame/hot surfaces. No smoking. Keep container tightly closed. Ground/bond container and receiving equipment. Store in a well-ventilated place. Keep cool.
IMPORTANT		Dispose of contents/container in accordance with local/regional/national/ international regulations.


4. Column description

OPUS[®] RoboColumn[®] PPCs can be configured in rows of eight (8) columns and easily arranged/fixed onto a 96-well array plate according to application requirements. As a result of this modular design, OPUS[®] RoboColumn[®] PPC technology is used in a broad spectrum of applications, such as parallel screening and optimization of chromatographic conditions, scale-down experiments, sample preparation prior to subsequent analysis like MS, ELISA or cGE/SDS-PAGE, as well as for the concentration of low titer compounds.

All chromatography media used in OPUS[®] RoboColumn[®] PPCs are also available in larger pre-packed OPUS[®] MiniChrom[®] PPCs of different geometries from 0.2 - 10.0 mL for the performance of scale-up studies by using common one-channel stand-alone LC-systems.

4.1 Column components

OPUS® RoboColumn® PPC components are labeled below (Figure 1).

Figure 1. Column components: OPUS® RoboColumn® PPC

4.2 Column materials of construction

OPUS[®] RoboColumn[®] PPCs are manufactured using polymers compatible with bioprocess requirements (<u>Table 3</u>).

Table 3. Materials of construction

Component	Material
Array plate	Polyoxymethylene copolymer
O-ring	Viton®
Column tube	Polypropylene
Frit	Polypropylene/Polyethylene, 7 – 12 μ m pore size (Porex [®])

4.3 Column physical specifications

Table 4. Physical specifications summary

Discourse Latter boots	Column volume					
Physical attribute	50 μL	100 µL	200 µL	450 μL	500 μL	600 μL
Bed height	2.5 mm	5.0 mm	10.0 mm	22.5 mm	25.0 mm	30.0 mm
Column inner diameter	5 mm					
Plate size (96-well array)	128.3 x 86.0 x 14.0 mm					
Column label	ProductResin n	t number		l with the follo	owing:	

4.4 Solvent compatibility

OPUS[®] RoboColumn[®] PPC product contact materials of construction consist of polyethylene and polypropylene. The column materials of construction are chemically stable when exposed to all commonly used aqueous buffers and organic solvents, pH 1 - 14.

IMPORTANT: Avoid halogenated organic solvents and the non-halogenated organic solvent hexane.

For information on the chemical stability of the packed chromatography media, refer to the manufacture's resin specification.

4.5 Column use recommendations

Table 5. Column use recommendations

Description	Recommendation
Storage solution	 AIEX, CIEX: 20% ethanol + 150 mM sodium chloride HIC, SEC, AC, MMC: 20% ethanol CHT[™], CFT[™] (Bio-Rad[®]): 20% ethanol + 10 mM sodium phosphate, pH 6.8 HyperCel[™] (Sartorius[®]): 30% isopropanol + 0.1 M sodium phosphate, pH 4.3 ProSep[®] (Millipore[®]): 1% benzyl alcohol + 0.1 M sodium acetate, pH 5
Recommended storage temperature	 AIEX, CIEX, HIC, SEC, MMC: 4°C - 30°C AC: 4°C - 8°C
Working temperature	4°C - 30°C
Maximum working pressure	8.0 bar
Flow velocity	16 - 1000 cm/h [‡]

‡ Utilize the Liquid Transfer menu of the Te-Chrom[™] Wizard to set up the flow rate for each individual dispensing and chromatography step (5.1.1.6 Liquid Transfer, Te-Chrom[™] Wizard Software Manual, 396076, en, V1.0).

5. Preparing to use OPUS® RoboColumn® PPCs

5.1 Equipment

OPUS[®] RoboColumn[®] PPCs are designed for use on a robotic liquid handler. <u>Table 6</u> outlines the equipment required for robotic handling of OPUS[®] RoboColumn[®] PPCs using a Tecan Freedom EVO[®] workstation.

Equipment	Details	Tips and tricks
OPUS [®] RoboColumn [®] PPC 96-well base plate	Arrange up to 96 individual OPUS® RoboColumn® PPCs onto the 96-well array plate according to application requirements.	 Do not mix short (50, 100, 200 μL) and long (450, 500, 600 μL) OPUS[®] RoboColumn[®] PPCs. Ensure each OPUS[®] RoboColumn[®] PPC is securely mounted in the 96-well array plate prior to use (an audible click indicates that columns are securely in place).
Te-Chrom™ module	Use the Te-Chrom [™] module to integrate the OPUS [®] RoboColumn [®] PPC array onto the robotic worktable. • Height adjustable • Waste option	 Use the Te-Chrom[™] module in combination with a plate stacker (Te-Stack[™]) for optimized handling and storage of collection plates. Use the waste container to drain off solvents not required for analysis, e.g., conditioning, regeneration solvents. Ensure the OPUS[®] RoboColumn[®] PPC array is in an appropriate location relative to the collection plate before starting the experiment.
Te-Chrom™ Shuttle	Use the Te-Chrom [™] Shuttle to move a collection plate under the OPUS [®] RoboColumn [®] PPC array to fractionate the flow-through coming from each column's outlet.	• Use the RoMa arm to transport the collection plate from a pre-defined transfer position to any destination on the robotic worktable (e.g., plate reader, hotels, auto sampler, etc.) for further analysis (e.g., UV measurement, ELISA, HPLC, MS, etc.).
Te-Chrom™ Wizard	Use the Te-Chrom [™] Wizard to configure the chromatographic process and to set all process relevant parameters, e.g., volume, flow rate, etc.	 Use the plate layout configurator to assign labels such as resin name and column type. Use the neutralization option to adjust the pH of the fractions after acidic mAb elution. Consult with Tecan for application-specific needs.
Plate reader	Use the plate reader for data evaluation, e.g., UV measurement and determination of protein concentration.	 Calculate the precise volume of your collection fractions for subsequent data plotting.
Reagent and sample reservoirs	A wide variety of troughs, tubes, and plates can be positioned onto the robotic worktable using the appropriate Tecan carrier.	 Use an 8-, 48- or 96-deep well reservoir to prepare buffer solution/s.
Collection plate	Use any type of multi-well plate which matches the ANSI/SDS standard (UV- or non-UV readable).	 Use a half area 96-well microplate to collect fractions with a volume of 25 μL to 175 μL. Use a standard 96-well microplate to collect fractions with a volume of 75 μL to 340 μL. Use 96-deep well reservoirs to collect high volume fraction up to 2.0 mL.

Table 6. Recommended equipment for automated handling of OPUS® RoboColumn® PPCs

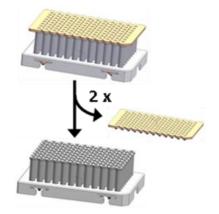
5.2 Experimental set-up

Design of Experiments (DoE) is an ideal tool for developing robust, high-throughput assays. When used in combination with OPUS® RoboColumn® PPCs, DoE enables efficient screening of chromatographic parameters such as resin type, pH, conductivity/ionic strength, salt type, etc. The Tecan Te-Chrom[™] Wizard and FluentControl[™] applications can be used to translate DoE into liquid handling instructions that are compatible with the respective Tecan workstation. For more detailed information on how to use the Te-Chrom[™] Wizard, refer to Section 6.3.

Examples of experimental set-ups are described in OPUS[®] RoboColumn[®] PPC application notes; see OPUS[®] RoboColumn[®] PPC literature, <u>Section 9</u>.

5.3 Sample preparation

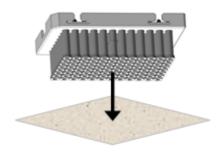
Clarify sample/s prior to loading on OPUS[®] RoboColumn[®] PPCs. Unclarified sample/s may clog the top and bottom filter frits, which negatively impacts the column lifetime.


6. Protocol

This protocol is designed as a general guideline for working with OPUS[®] RoboColumn[®] PPCs. Adjustments may be required depending on type of application, sample, resin type, and OPUS[®] RoboColumn[®] PPC dimensions.

6.1 Prepare the OPUS® RoboColumn® PPC array

- 1. Remove cover seals (Figure 2). Gently peel off the top and bottom seal from the OPUS[®] RoboColumn[®] PPC array.
 - One product package contains 8 96 individual pre-packed OPUS[®] RoboColumn[®] PPCs arranged on a 96-well array plate and two removable cover seals for the appropriate storage of the OPUS[®] RoboColumn[®] PPC, see Figure 2.


Figure 2. Prepare OPUS® RoboColumn® PPC array: Remove cover seals

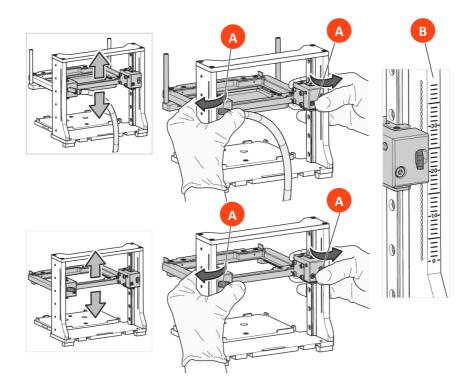
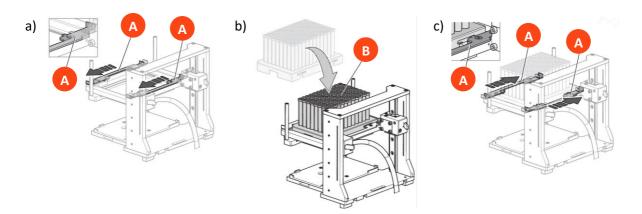

2. Remove excess storage solution from needle adaptor inlet (Figure 3). Remove remaining storage solution in the top part of the columns by blotting the OPUS® RoboColumn® PPC array upside down on a soft paper tissue.

Figure 3. Prepare OPUS[®] RoboColumn[®] PPC array: Remove excess storage solution

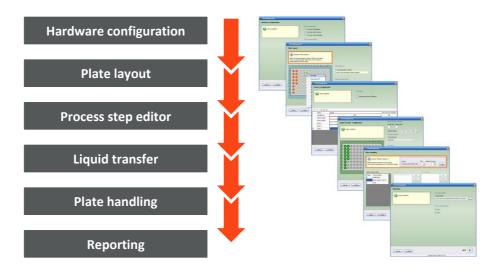
6.2 Prepare the Te-Chrom[™] module

- 1. Adjust the operating height of the Te-Chrom[™] (Figure 4). Press and hold the fastener (A) to set the Te-Chrom[™] to the required height of the Te-Chrom[™] module scale (B).
- **Note:** Make sure that the OPUS[®] RoboColumn[®] PPC array is in a position as close as possible to the collection plate before starting the experiment.


Figure 4. Adjust Te-Chrom[™] operating height

Load OPUS[®] RoboColumn[®] PPC array into Te-Chrom[™] (Figure 5). Move the locking slider (A) to the left mechanical stop (Figure 5a). Load the OPUS[®] RoboColumn[®] PPC array (B) (Figure 5b). Move the locking slider (A) to the right mechanical stop to lock the OPUS[®] RoboColumn[®] PPC array in place (Figure 5c).

Note: Make sure that all the OPUS[®] RoboColumn[®] PPC are well fixed into the 96 well array plate before starting the experiment.



6.3 Set-up Te-Chrom[™] Wizard

The Te-Chrom[™] Wizard is a dialog-based graphic user interface offered by Tecan and based on the Freedom EVOware[®] software. The Te-Chrom[™] Wizard was developed for use with OPUS[®] RoboColumn[®] PPCs and provides the possibility to configure hardware, plate layout, and the chromatographic process as well as to set all process relevant chromatographic parameters (e.g., flowrate and volume) without direct script writing (Figure 6).

Figure 6. Te-Chrom[™] Wizard features

For more detailed information please refer to the Te-Chrom[™] software manual. Consult with Tecan for application-specific needs.

- 1. Configure Te-Chrom[™] hardware (Figure 7).
 - Select the appropriate configuration: Te-Chrom[™] Stand Alone, Te-Chrom[™] with Te-Stack, Te-Chrom[™] with Te-Shuttle.
 - Select Te-Chrom[™] options (e.g., waste tray).
 - Define a transfer position for the collection plate.

- 2. Configure plate layout in Te-Chrom[™] Wizard (Figure 8).
 - Select the OPUS[®] RoboColumn[®] PPC labware.
 - Define the required OPUS[®] RoboColumn[®] PPC matrix.
 - Select the OPUS[®] RoboColumn[®] PPC dimension.
 - Label sample as desired, e.g., resin name.
 - Import or export the plate layout.

Figure 8. Te-Chrom[™] Wizard Plate Layout menu

🛱 Ch	romatography				X
Plat	romatography e Layout Parameter incid requir det the dreamatographic con- sing bales and column type 1 2 3 4 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lumns. Define your column t-click on the surface to 5.	11 12	Select Labourne • Chromatography Columns Citic on the worktable to pelect laboure Import / Export Layout	
FGH		RoboColumn 200 RoboColumn 450 RoboColumn 500 RoboColumn 600 Clear Data Copy Paste	0000	Save Load	
		Disabled			

- 3. Define chromatographic workflow by setting individual steps using Te-Chrom[™] Wizard Process Configuration (Figure 9).
 - Use the Continuous Fraction Collection option to collect fractions over multiple plates, without leaving gaps between plates pipetted in different process steps and to optimize the consumption of collection plates.

	ocess Configura			
	Input comple	ted	Set Options	lection
^	V 🖸 ն 🗙	Details		Status proce
^	v 🗅 🖬 🗙		Edt.,	Status proce
^	✓ 12 1 × × Name		Edt., Edt.,	Status proce
^	Vame Equilibration			Status proce
^	Name Equilibration Apply Sample		Edit	Status proce
^	Name Equilibration Apply Sample Wash Sample		Edit Edit	Status process of plat

Set Name Process Step Na

Equilibration

Set Wash Tips Command

Waste [ml] Cleaner [ml]

2 🚔

Cleaner Station Wash Station Cleaner shallow 🔽

Resin volume Volume [µ]

= 300

1 🚔

Set Source Liquid

Labware5

Set Volume

3

* Source Liquid 树

🔁 × 100

Use absolute volume

Choose Options

Veutralization

Data Collection

Number of Fractions

150

150 150

Well

Fraction Volume [µl]

Process Full Plate

4. Define workflow parameters for each individual process step (Figure 10).

Figure 10. Define workflow parameters in Te-Chrom[™] Wizard

Process Step

- Define process name as desired, e.g. Equilibration.
- Select "Process Full Plate" to process the full OPUS[®] RoboColumn[®] PPC array.
 - If Process Full Plate is not selected, the chromatographic protocol defined in Step 3 will be executed column-by-column.

Liquid Transfer

- Set wash tips command.
- Set volume.
- Set liquid handling parameters:
 - Set the dispensing volume.
 - Set the required liquid class for aspiration.
 - Set the required flowrate [cm/h].
 - Calculate the required residence time (τ) by dividing the OPUS® RoboColumn® PPC volume (CV) by the volumetric flowrate (uv): $\tau = CV/uv$.

	Choose Waste Option
ľ	✓ Engage Waste Tray
	Select Positioning
	Te-Chrom waste tray positioning
	💿 RoMa 🔿 LiHa

Waste Option

- Select Engage Waste Tray to collect flow-through in a waste tray using robotic arms (e.g., RoMa, LiHa).
 - When Engage Waste Tray is not selected, flowthrough will be collected in a collection plate.

Neutralization and Data Collection

- Select Neutralization to perform a pH adjustment after acidic elution of mAbs.
- Select Data Collection to evaluate the collection plate in a plate reader device, e.g., UV measurement.

Fractions

 If Engage Waste Tray is not selected (see Waste Option, above), enter the number of fractions to collect for each chromatography step.

- 5. For each process or process group, utilize the Plate Handling menu (Figure 11) to:
 - Enter the required number of source plates.
 - Enter the required number of destination plates.

Add the	Number of plates required: 1 e required amount of source plate dd the required amount of destina	s. ation plates.	Carrier Te-Stack right Mi		Site Number of plates	Done
Select Pr Plates 0 1 0	ocess Steps Process Steps Equilitration Apply Sample, Wash S Wash	* Source Te-Stack	right MCA96 (1/1)	Add Delete	* Destination	Add

Figure 11. Te-Chrom[™] Wizard Plate Handling menu

- 6. Utilize the Reporting menu (Figure 12) to:
 - Select output folder.
 - Select output format.

Figure 12. Te-Chrom[™] Wizard Reporting menu

Chromatography	Σ
Reporting	
	Set Output Folder
V Input completed	Output Folder
	C:\Documents and Settings\masc4ch\My Documents
	Choose Output Format
	🗹 XML 🚩
	✓ Text

After the experimental set-up is complete, the Te Chrom[™] Wizard will generate a chromatographic method in Freedom EVOware[®] software automatically.

6.4 Run chromatographic method

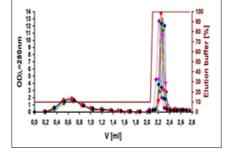
Once all workflow parameters are defined, and the worktable is properly arranged, run the chromatographic method.

Note: Make sure that all required solvents and consumables (e.g., collection plates) are in the designated position on the robotic worktable, before running the chromatographic method.

6.5 Evaluate data

Determine the precise volume of the collected fractions by using an appropriate plate reader. Determine the protein concentration via UV measurement.

Note: Use robotic arms (e.g., RoMa, LiHa) to transfer the collection plate to any location on the robotic worktable or to secondary devices (e.g., auto sampler) for further analysis (e.g., HPLC, MS, ELISA, cGE/SDS-PAGE) after path length detection.



6.6 Plot data

Plot the UV data against the fraction volume to create a pseudo-chromatogram (Figure 13).

Note: Make sure that blank values of the used solvents are subtracted from the UV data before plotting.

6.7 Regenerate resin and store the column array

- For appropriate regeneration of OPUS[®] RoboColumn[®] PPC, refer to manufacture's recommendation for the corresponding resin.
- For appropriate storage of OPUS[®] RoboColumn[®] PPC, refer to <u>Table 5</u>.

7. Troubleshooting

OPUS® RoboColumn® PPC is clogged.

Possible causes	Actions
 The sample is too viscous. There is too much cell debris in the sample. The column has been regenerated and used too many cycles. 	 Increase dilution of the cell paste before lysis or dilute after the lysation. Centrifuge and/or filtrate the sample if unclarified sample has been used. Reduce the number of cycles.

OPUS® RoboColumn® PPC is leaking.

Possible causes	Actions	
 Columns are clogged. The o-ring seal is damaged. The insertion depth of the robotic needle is incorrect. 	 Refer to clogged actions listed above. Check the taught X- and Y-coordinates for OPUS® RoboColumn® PPC labware for precision. Verify correct insertion depth of the robotic needle (16 mm from the top of the column). 	

OPUS® RoboColumn® PPC separated from 96-well array plate when robotic needles are lifted.

Possible causes	Actions
 OPUS[®] RoboColumn[®] PPC is not well fixed into the 96-well array plate. 	 Ensure each OPUS® RoboColumn® PPC is securely mounted in the 96-well array plate prior to use (an audible click indicates that columns are securely in place). Purchase OPUS® RoboColumn® PPC downholder from Tecan to retain OPUS® RoboColumn® PPC in array plate.

Low protein recovery in the elution fraction(s).

Possible causes		Actions	
•	Residence time for sample loading is too low	Decrease the flow rate for sample loading	

8. Ordering information

Table 7. OPUS® RoboColumn® PPC ordering information

Product	Quantity	Part number
OPUS [®] RoboColumn [®] PPC 96-well array plate	1	00000507
Cover seals, Top, Bottom	1	0000008
OPUS® RoboColumn® PPC, 50 μL	8-row	XXXXXX08R-02
OPUS [®] RoboColumn [®] PPC, 100 μL	8-row	XXXXXX08R-01
OPUS [®] RoboColumn [®] PPC, 200 μL	8-row	XXXXXX08R
OPUS [®] RoboColumn [®] PPC, 450 μL	8-row	XXXXXX08R-22.5
OPUS [®] RoboColumn [®] PPC, 500 μL	8-row	XXXXXX08R-25
OPUS [®] RoboColumn [®] PPC, 600 μL	8-row	XXXXXX08R-30

9. Online literature

OPUS® RoboColumn® PPC literature can be found on the <u>Repligen website</u>.

10. Index

Column components	7
Equipment	6
Experimental set-up	10
Handling	9
Materials of construction	7
Note	.6, 9, 11, 15, 16
Physical specifications	8
Precautions	6
Protocol	10, 11

Safety	6
Sample preparation	7
Set-up	15
Solvent compatibility	8
Specifications	8
Te-Chrom [™] Wizard	8, 9, 10, 15
Tips and tricks	9
Troubleshooting	16, 17
Warning	6

